Werbung


Solarzellen: Laserblitze steigern Wirkungsgrad

Black-Silicon-Solarzelle des Fraunhofer Heinrich-Hertz-Instituts aus Schwarzem Silizium mit Vergrößerung der Oberflächenstruktur im Bereich der Metallkontakte. © Fraunhofer HHI
Black-Silicon-Solarzelle des Fraunhofer Heinrich-Hertz-Instituts aus Schwarzem Silizium mit Vergrößerung der Oberflächenstruktur im Bereich der Metallkontakte. © Fraunhofer HHI

Fraunhofer-Forscher des Heinrich-Hertz-Instituts (HHI) haben mit Lasertechnik den Wirkungsgrad von Silizium-Solarzellen stark gesteigert. Durch die Oberflächenveränderung wird der bisher ungenutzte Infrarotanteil für die Energiegewinnung genutzt. Die mit dem Laser behandelten Flächen werden schwarz, daher spricht man auch von „Schwarzem Silizium“ oder „Black-Silicon-Solarzellen“.

Eine herkömmliche Silizium-Solarzelle nutzt den sichtbaren Spektralbereich des Sonnenlichts, um aus Licht Energie zu erzeugen. Ein Drittel des gesamten Sonnenlichts besteht jedoch aus Infrarotstrahlung. Neue Typen der Solarzelle, so genannte Black-Silicon-Solarzellen, können dieses infrarote Spektrum des Sonnenlichts nutzen und mehr Energie erzeugen. Der bisher größte Wirkungsgrad reiner Black-Silicon-Solarzellen erreichten Forscher der Harvard University – er lag bisher bei 2,2 Prozent. Das Fraunhofer HHI hat mit Hilfe eines speziellen Laserverfahrens, das das Siliziums-Ausgangsmaterial verändert, die Kapazität der Black-Silicon-Solarzellen auf 4,5 Prozent verdoppeln können.

Die Oberflächen von Silizium-Wafern werden mit Hilfe von ultrakurzen Laserblitzen – sogenannten Femtosekunden-Laserpulsen – behandelt. Die Zelle absorbiert an der Oberfläche durch diese Veränderung den bisher ungenutzten Infrarotanteil für die Energiegewinnung. Die laserbehandelten Flächen werden schwarz, daher spricht man auch von „Schwarzem Silizium“ oder „Black-Silicon-Solarzellen“. Die Oberfläche der Zelle absorbiert durch diese Veränderung den bisher ungenutzten Infrarotanteil für die Energiegewinnung.
Potenzial der schwarzen Zellen

Das realistische Potenzial der Black-Silicon-Solarzellen sehen die Forscher bei etwa einem Prozent absolutem Wirkungsgrad-Gewinn gegenüber den heutigen Standard-Solarzellen. Deren Wirkungsgrad liegt bei etwa 15 Prozent und sie nutzen ausschließlich den sichtbaren Spektralbereich. „Das Licht wird nach der Laserbehandlung der Oberfläche kaum noch reflektiert, sondern von der aufgerauten, nadelförmigen Oberfläche hin- und hergeworfen und gelangt dadurch ins Silizium. Erst hier, im Silizium, kann die Zelle das Licht in Ladungsträger umwandeln“, beschreibt Stefan Kontermann, Leiter der Arbeitsgruppe „Nanomaterialien für Energiekonversion“ am Fraunhofer HHI, den Vorgang. Zusätzlich wird Schwefel in die Silizium-Oberfläche eingebaut. Dies führt zu einer höheren Absorption des Lichts im infraroten Teil des Sonnenspektrums, also oberhalb von 1100 Nanometern.
Die neuen Black-Silicon-Solarzellen nutzen das eintreffende Licht nicht nur effizienter, sie sind in der Produktion sogar kostengünstiger: Nur halb so viele Herstellungsschritte sind nötig gegenüber der Standard-Solarzellen.
Einsatz im Dunkeln

Black-Silicon-Solarzellen können wie herkömmliche Solarzellen eingesetzt werden, aber künftig auch im Dunkeln infrarotes Licht absorbieren, beispielsweise Wärme. Denkbar sei die Anwendung auch in der Photovoltaikindustrie. Das Fraunhofer HHI arbeitet derzeit an einem Industrieprojekt, das herkömmliche Solarzellen um eine Black-Silicon-Solarzelle auf der Rückseite erweitern will. „In der ungenutzten Infrarotstrahlung sehen wir das Potenzial, um zusätzlich noch 1 Prozent zu nutzen“, erklärt Stefan Kontermann.

Das Verbundprojekt „Neuartige Photovoltaik mit „Schwarzem Silizium“ und „SchwarzemZinkoxid“ (NEPHOS)“ wurde über zwei Jahre vom Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU) mit rund 850.000 Euro gefördert. (ad)

PM: http://www.hhi.fraunhofer.de/








Top